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Global Existence Proof for 
Relativistic Boltzmann Equation 

Marek Dudyfiski 1 and Maria L. Ekiel -Je~ewska 2 

Received May 23, 1991 

The existence and causality of solutions to the relativistic Boltzmann equation 
in L 1 and in L~o ~ are proved. The solutions are shown to satisfy physically 
natural a priori bounds, time-independent in L 1. The results rely upon new 
techniques developed for the nonrelativistic Boltzmann equation by DiPerna 
and Lions. 
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1. INTRODUCTION 

A global existence proof  for the Boltzmann equation has been recently 
given by DiPerna and Lions. (I) Its sophisticated construction has 
stimulated a new direction in mathematical  kinetic theory. 

In this paper  one of the straightforward applications of the new tech- 
niques introduced by DiPerna and Lions is presented. Namely, the global 
existence proof  for the relativistic version of the Boltzmann equation is 
given. 

Due to the growing interest in its applications, ~2) the relativistic 
Boltzmann equation has been recently analyzed and the structure of its 
linearized form has been established, including existence, uniqueness, 
causality proofs, ~3-5) and the justification of the hydrodynamic approxima- 
t ionJ 6) The basic structure of the relativistic Boltzmann equation is essen- 
tially the same as in the nonrelativistic case, with slight modifications due 
to the relativistic interactions. However, the relativistic bound on velocity 
has led to some qualitatively new results, such as causality of the equation 
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(i.e., the dependence of its solutions on the initial data only inside the past 
interior of the light cone) and the analytic dispersion relation. 

The nonlinear relativistic Boltzmann equation in LI(R 3 x R 3) needs 
more delicate treatment. In the relativistic modification of the DiPerna and 
Lions global existence proof a new time-independent estimate for the solu- 
tion norm is needed. The reason is that the nonrelativistic estimate is based 
on the nonrelativistic collision invariant ( x -  Yt) 2, which has no relativistic 
analog. 

Fortunately, the DiPerna and Lions techniques can be used to prove 
the causality of the relativistic Boltzmann equation. This leads to the 
desired estimate: for finite time intervals, solutions of the relativistic 
Boltzmann equation remain in L ~ tR3" LI(R3)), providing the initial data 
have been in L t ~R 3" LltR 3~ This local structure of the equation allows l o c  ~, ~ k ) ) "  

one to repeat the DiPerna and Lions global existence proof with only 
minor adjustments. 

The paper is organized as follows. 
In Section 2 the relativistic Boltzmann equation is introduced and 

assumptions on the relativistic cross sections are specified. In Section 3 the 
existence proof in L t tR 3" LI(R3)) is given. The result is used in Section 4 l o c ~  ' 

to construct the global existence proofs in LI(R3• and in 
L 1 r 3" LI(R3)) with initial data close to equilibrium. l o c k  

2. T H E  R E L A T I V I S T I C  B O L T Z M A N N  E Q U A T I O N  

The relativistic Boltzmann equation (RBE) has the form ~7'8) (c = 1; the 
signature is + - - - ) 

(O'+ P--'Vx) (2.1) 

where 

Q(f , f )=Q+(f , f ) -Q (f,f) (2.2) 

_ d3p, f dr2 ' ' 1 fR3 P,o  Js2 f (p  ) f ( p , )  B(g, O) (2.3) Q+(f'f)=po 

Q (f,f)=fL(f)=f(p)lf,3d3p-----~*fsdf2f(p,)B(g,~9) (2.4) 
P ,o  

and p = (Po, P), where Po = ( M2 q- p2)1/2 is the particle energy, M is the par- 
ticle rest mass, sin= [p,  +p ]  is the total energy in the center-of-mass 
system, 2g = IP, - P l  is the relative momentum value in the center-of-mass 
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system, c o s ~ = l - 2 ( p - p , ) ( p - p ' ) ( 4 M 2 - s )  ~ defines the angle of 
scattering ~9 in the center of mass system d~2 = d(cos O) &b, 

B(g, ~9) = ~  ~r(g, ~9) 

and a(g, 0) is the scattering cross section in the center-of-mass system. 
In the proof we make the following assumption for the scattering cross 

section: 

(i) O~t~oc(R3xS 2) (2.5) 

(ii) --1 f d3p, A(g) ~ 0 as ]P[ --' ~ ,  for all R <  ~ (2.6) 
P0 JBR P,0 

where A(g) = ~ dO B(g, 0). 
Conditions (i)-(ii) are the straightforward modification of the non- 

relativistic assumptions (9) and (23) adopted by DiPerna and Lions, (1) 

(i) B~L]oc(RNxS N-1 ) (2 .7)  

(ii) ( M Z + l p l 2 ) - l f  d z A ( z ) ~ 0  as IP[--*~, 
[z Pl ~< R 

for all R < ~ (2.8) 

However, the relativistic assumptions (2.5)-(2.6) are more restrictive than 
the nonrelativistic ones (2.7)-(2.8). Namely, the nonrelativistic condition 
(2.8) includes so-called hard interactions. However, it is easy to check that 
for A(g) ~ g~', c~>~O, we have 3 

C~ p;/2-1 <L ~ d3p* A(g) <~ C2p;/2-1 (2.9) 
Po ~BR P*O 

Thus the relativistic assumption (2.6) gives c~ < 2, which excludes relativistic 
hard interactions defined as 15) 

A(g) >1 const, g2 (2.10) 

3. GLOBAL EXISTENCE OF S O L U T I O N S  

We are concerned in this section with the main result of this work, 
namely the global existence of solutions to the Cauchy problem for the 

3The estimate is entirely different than the nonrelativistic one, since g2=2(p,oPo-- 
P , ' P  - M 2 )  ~  Po. 
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relativistic Boltzmann equation in C([0, 00); L 1 IR 3" LI(R3))). The proof l o c  ~, 

relies heavily on DiPerna and Lions (1) and we assume that the reader is 
familiar with their paper, as we are going to show that locally in x the 
Cauchy problem for the relativistic equation can be cast as a problem 
virtually identical with the nonrelativistic situation. 

T h e o r e m  3.1. Let fo satisfy the following conditions: 

(a) fo >~ 0 a.e. in R 3 x R 3. 

(b) For  any compact set f2 c R 3 

f d3x fR 3 d3P (1 + po + Iln fol) fo < 

then there exists f ~  C([0, oo); L 1 (R 3. LI(R3)))  satisfying 
l o c  ~. ) 

(i) f l , = 0 = f o  

(ii) ( l + f ) 1  0 (f,f)eL~176 
( l + f )  1O+(f, f)~Ll(O, Z; t~oc(R3x R3)) 

L(f) e L~(0, T; L~or 3 x R3)) 

for all T <  0% which is a mild or equivalently a renormalized solution of 
the RBE (2.1) with cross sections obeying (2.5)-(2.6). In addition, f is 
causal and it satisfies 

f~>O a.e. in R3 x R  3 

sup f d3xfR d3p(l+po+llnf])f<oo 
t e  [0 ,  T ]  3 

ProoL Our proof hinges on the crucial observation that the inherent 
causal structure of the relativistic Boltzmann equation allows us to con- 
struct its approximate solutions locally in x for finite times. To show this, 
we consider a compact set ~2 c R 3 and t e  [0, T] with T <  oo. We introduce 
a set (2 t c R 3 defined as follows: 

Qt = { x 6 R 3 ;  3ye f2  such that I x - y [  <<.ct} (3.1) 

Our aim is to construct a solution to the RBE in S =  f2 x R 3. 
Following DiPerna and Lions, with truncation and regularization of the 
initial data, we can obtain fg~D'(R3xR 3) such that fg~>0. With a con- 
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venient approximation of the collision kernel we arrive at the problem of 
solving the approximate equation 

I n \  
~, P o  C~ t + ~ " V x l  f n  , n n = Q n ( f , f )  in (0, T ) x R 3 x R  3 (3.2) 

- -  /z with initial conditions f n 1 , = o - f o ,  where Q* acts on any function ~b as 

Q* = 1 + n  -1 3 [~b[ d3P Q, (3.3) 

Q.(~b,~b)=lfe3 d3p* ~ dt2((b'qk,-fbO,)B~(g,~9 ) (3.4) 
P,o ~ 

and B. e L ~ c~ LI(R 3 x $2). 
We first observe that Q* is bounded in L 1 c~L ~176 Thus, the standard 

iteration procedure shows that for each n a unique nonnegative solution to 
Eq. (3.2) exists which is causal, i.e., the solution on S = Q  x R 3 at time t 
depends only on the initial data specified on the set S, = s x R 3, for all 
bounded (2. In particular, the solution on the set S for t e [0, T] depends 
only on the initial data on the set Sr=(2rxR  3. Thus, as long as we 
confine our attention to the solution in [0, T] x S, it is sufficient to assume 
the following initial data: 

[fo; (x,p)eST (3.5) 
fo = (0; (x, p) r ST 

Thus, for appropriately regularized initial data An f0 ,  solutions to Eq. (3.2) 
satisfy 

suppfn(t)c_S2r=(f2r)rxR3=g22rxR 3 for t e  [0, T] (3.6) 

Consequently, we confine our analysis to LI(S2r) and we can finally choose 
such a regularization of the initial data that 

f sd3xd3p/ fo- fg[(1  +.lxl2+po) ~ o o '  0 (3.7) 
T 

fsd3x d3pf~ [ln)~l < C independent ofn (3.8) 
T 

and we finally set 

n ~ n  - - 1  f o = f o  +n e x p ( -  [x12- Po) l e t  (3.9) 
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We solve now Eq. (3.2) with initial datajT~, and exactly the same reasoning 
as in ref. 1 shows the existence of a unique nonnegative solution f "  
satisfying the following conditions: 

ff d3xd3PlD~fn[(l+lx[k+p~)~C,(T,m,k) (3.10) 
R 3 • R 3 

D~f" e L~((O, T) • R3 • R 3) (3.11.) 

t E [0, T]; T < ~ ,  k >~ 0, m >~ 0, and D ~ denote any derivatives up to order 
m. Combining inequalities (3.10) and the fact that for all n, s u p p f "  c S2r 
with properties of the relativistic collision term, we can easily show that for 
T <  ~ these f "  satisfy 

f", Vxf", Vpf", ~tf" e L ~ c~ LI((0, T) x R 3 • R 3) (3.12) 

Q+(f",F),Q (f',f")eL~oc((0, r)•215 ~) (3.13) 

f~ d3xd3pf"(l+lxl2+Po+llnf"l)<<.Cr (3.14) sup 
t ~ [0, T] R3 • R3 

fo f"f"' dO B(f f ,  - f ' f , ) i n  ~ " * ~< Cr  fiff  dt d3x d3p d3p, "" "' " ~ 
R3•215215 f " f *  

(3.15) 

Having a sequence of approximate solutions satisfying the properties 
(3.12)-(3.15), it requires only minor adjustments of the proof to check that 
the main theorem of DiPerna and Lions is true also in the relativistic case. 

L e m m a  3.1 (Theorem VII.1 in ref. 1). Assume that B satisfies 
Eqs. (2.5) and (Z6). Then the following assertions hold for a sequence f "  
satisfying (3.12)-(3.15): 

(i) For all OeL~( (0 ,  T) x R 3 xR3), 

IR 3 dap f"(t, x, p) ~b(t, x, p ) ~  IR 3 dap f(t, x, p) O(t, X, P) 

in LP(O, T; LI(R3)) for all p < 0% and 

L(f") ~ L(f) 

in LI((0, T) • R 3 • BR) for all R < ~ .  

(ii) For all T < ~ ,  R < ~ ,  ~peL~((O,T)xR3• 3) supported in 
[0, T] • BR x BR, and for all e > 0, there exists a subsequence o f f "  that we 
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shall denote by f "  for simplicity and a Borel set E :  [0, T] x BR x BR such 
that meas E c <<, ~ and 

fR3~Q-(fn, fn) lEd3p--~ fR3~tQ-(f,f)lEd3p in LJ((O,T) xBR) 

fR3OQ+(fn, fn) led3p--Z~ fRaOQ+(ff) led3p in LI((O,T) xBR) 

j'3OQ+-(f',fn) d3p--;~ fR3tPQ+-(f,,f)d3p 
in measure on (0, T) x BR for all R < oo 

In particular, Q-+(f, f )  G L:(R3p) a.e. t > 0, x G R 3. 

(iii) Q+(f f)(1 + f ) - l  eLl((O, T) x R 3 x BR) (VR, T <  00) 
and Q-( f  f ) (1  + f ) - I  e L~((0, 00); L~(R 3 x BR)) (u < 00). 

(iv) f i s a  renormalized solution of the RBE; equivalently, f is a mild 
solution of RBE a n d r e  C([0, 00); L I ( R  3 • R3)). 

Lemma3.1 and the causality of the approximate solutions fn 
immediately give the causality o f f  itself. 

Using now the causality property of the solution f, we see that f(t)Js 
is independent of the choice of initial data outside S r  for t e [0, T]. The 
application of Lemma 3.1 leads directly to the assertions of Theorem 3.1 in 
[0, T] x f 2 x R  3. This consideration can be repeated for all T <  oc and 
bounded sets (2 provided that the initial data satisfy condition (b) of 
Theorem 3.1. The conservation laws and the convexity of the function 
ton t) show that 

[ d 3 x  f d3p(l+po+llnfI)f<oo (3.16) sup 
t~ [0, T] JO JR3 

for any compact g2 and T <  oo. This ends the proof of Theorem 3.1. | 

We note here that it is possible to change a bit the order of arguments 
in the above proofs. It is quite easy to repeat the original proof of DiPerna 
and Lions for a sequence of approximate solutions defined on a common 
compact support in x, without referring to the boundedness of Hx2flfL,. 
Morgenstern's lemma (9) still applies for such a sequence, leading to its 
weak convergence to a solution. 

Lemma 3.2 (Morgenstern). Let f,,GLI(RN), f.=f.(x), be a 
sequence of nonnegative functions satisfying 

f fn(x)(1 + [xl'~+logf~)dx <C 
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Then there exists a subsequence {f,j} converging weakly to a function 
f ~  LI(R N) and 

jlim f f~:(x)+(x)dx= f f(x)+(x)dx 

providing (1 + Ixl) -~' •(x) ~ L~ 0 <~ 1s t < l.~. 

Thus, it is clear that the estimates depend only on the maximal linear 
dimension of the set ~2 rather than on the particular location in the R 3 
space. We have chosen an indirect approach to appeal directly to the 
DiPerna and Lions results, avoiding to repeat arguments which differ from 
theirs in details only. On the other hand, the other approach for the non- 
relativistic Boltzmann equation has no special value, as the solutions in this 
case are not causal. 

4. THE C A U C H Y  PROBLEM IN L 1 A N D  FOR S Y S T E M S  
CLOSE TO GLOBAL E Q U I L I B R I U M  

We first note that in the proof of Theorem 3.1 bounds on the 
expression 

fd3x d3p (1 + P o +  Iln f l ) f  
S 

can be expressed in terms of the corresponding bounds on 

f d 3 x  d3p (1 + P o +  Iln fot) fo 
ST 

and they can grow with T. If we assume a uniform L 1 bound on initial 
data, i.e., fo >~ 0 a.e. in R3•  R 3 and 

fR3d3x ~ d3p (1 + po+[lnfoh)fo <C (4.1) 

then the following extension of Theorem 3.1 holds. 

T h e o r e m  4.1. Letfo satisfy (4.1). 
Then there exists f ~  C([0, ~ ) ;  Li(R3 • R3)) satisfying 

f l / = o = f o  

(1 + f )  -~ Q- ( f ,  f ) e  L~ ~ ;  L~(R z • BR)) 
(1 + f ) - i  Q+(f,f)zLl(O, T;LI(R3• 

L ( f )  z L~(0,  ~ ;  L ' (R  3 • ~R)) 
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for all R, T <  oo, which is a mild or equivalently a renormalized salution 
of RBE (2.1). In addition, the solution satisfies 

supfR d3x fR d3p(l + po+lln fl) f <C 
t > ~ O  3 3 

ProoL For arbitrary T <  ~ ,  we divide _R 3 into boxes/2~ with centers 
in x,  and length L each. L is chosen so large that 

/2nT c 2/2n (4.2) 

where 2/2. denotes a box with length 2L centered in x..  The /2.r  was 
defined in the previous section. According to Theorem 3.1, for any set 
S. = /2 .  • R 3 we can construct a solution, which we denote by f~(t). It is 
easy to see that 

n =  - -  cJo 

<~CfR3fR3d3xd3p(l+po+llnfol)fo (4.3) 

In particular, due to the conservation laws, we haye 

~" fa fR~d3xd3p(l+P~ 3d3xd3p(l+p~176 (4.4) 
n =  - - o o  n 

Equation (4.4) shows that the function f defined as 

{fn(x,p,t),(x,p)~/2~• t~[O,T]} (4.5) f (x ,  p, t )=  a 

belongs to C([0, T]; LI(R 3 • R3)) for any T <  oo, as we can choose bounds 
describing the continuity property of functions f a independently of n. All 
necessary estimates can be obtained from the inequality (4.4) and as it is 
independent of T, the assertions of Theorem 4.1 hold for t~ (0, c~). | 

For systems close to global equilibrium or with defined asymptotic 
behavior at [x[ --+ oo in the form f0(x, p) = CFeq(p), where Feq(p) is Jiitner 
equilibrium solution of RBE (2.1), we cannot obtain any estimate uniform 
in t. However, the causality of solutions allows for the following strong 
form of the local-in-time existence theorem: 

T h e o r e m  4.2. Let the initial da ta fo  satisfy 

s u p f  fR3d3xd3p(l+po+llnfol)fo<C 
n ~ Q n  

for any partition of R 3 made of equal boxes/2n. 
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Then for any T <  m there is a n f s  C((0, T]; L~oc(R 3 x R3)) satisfying 

fl,=o=fo 
(1 + f ) - i  O-( f ,  f ) s  L~(O, T; L~oc(R3x R3)) 

(1 + f ) - i  Q+(f ,  f ) ~  LI(0, T; L~oo(R 3 x R3)) 

L( f )~L~(O,  T; 1 3 Lloc(R • R3)) 

for all R < ~ ,  which is a mild or equivalently a renormalized solution of 
RBE (2.1). For  t ~ [0, T) this solution satisfies 

sup fQ d3x fR d3P(1 -k- p o + l l n f l ) f < C ( T )  
rt n 3 

Proof. For  a given T <  ~ ,  we choose the partition (2n such that the 
condition (4.2) is fulfilled. Then the application of Theorem 3.1 leads to the 
existence of a solution f in (2n • R 3 for t ~ [0, T]. Due to the fact that the 
relativistic Boltzmann equation is invariant with respect to translations in 
x, we can solve the RBE in (2n x R 3, first translating it to the set O o • R 3 

and then translating it back to the original position. We see that all bounds 
connected with II Ix[2fh[Ll(s.)can be expressed by bounds on IlZZfotlLL(S.r). 
All other bounds are also dependent only on the L 1 bounds of the initial 
data on S . r  and can be directly expressed by 

supf  d g x d a p ( l + p o + l l n f o l ) f o  
n nT  3 

(2,r grows with T, but due to our assumption, this supremum is finite for 
any T <  oo. | 

Theorem 4.2 gives the existence of solutions to the RBE for systems 
close to global equilibrium where the hydrodynamic description of the 
system should be correct for the long-time limit as well as for initial data 
describing shock wave propagation. But in both cases we can so far 
guarantee existence only in finite (however arbitrarily large) times. In 
particular, we are not able to control the conservation laws and it is not 
possible at this stage to show an approach to equilibrium for these solu- 
tions. Similarly to the nonrelativistic Boltzmann equation, the uniqueness 
of this class of solutions remains an open problem. 
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